Automatic Prediction of Breast Cancer Metastasis Stages via Deep Convolutional Networks

نویسندگان

  • Shenghua Cheng
  • Shaoqun Zeng
  • Jiangsheng Yu
چکیده

Automatic and accurate detection of breast cancer metastases is meaningful for reducing the workload of the pathologists and reducing the cost of diagnosis. In this paper, we presented a learning-based method for automated prediction of breast cancer metastasis stages. This method is trained and validated on Camelyon17 challenge datasets. The method consists of three parts: tissue extraction, tumor region detection and cancer metastasis stage prediction. Index Terms – Cancer metastases prediction, deep convolutional networks, Camelyon17 challenge

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Breast Cancer Metastasis Using Fuzzy Models based on Data from Iranian Breast Cancer Patients

Introduction: The metastasis of breast cancer, the spread of cancer to different body parts, is considered as one of the most important factors responsible for the majority of deaths caused by breast cancer in women. Diagnosing the breast cancer metastasis at the earliest stages helps to choose the best treatment and improve the quality of life for patients. Method: In the present fundamental r...

متن کامل

Prediction of Breast Cancer Metastasis Using Fuzzy Models based on Data from Iranian Breast Cancer Patients

Introduction: The metastasis of breast cancer, the spread of cancer to different body parts, is considered as one of the most important factors responsible for the majority of deaths caused by breast cancer in women. Diagnosing the breast cancer metastasis at the earliest stages helps to choose the best treatment and improve the quality of life for patients. Method: In the present fundamental r...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Automated Detection and Classification of Cancer Metastases in Whole-slide Histopathology Images Using Deep Learning

This paper presents and evaluates automatic breast cancer metastases detection in whole-slide images of lymph nodes. The classification is performed on patient level by inspecting several WSIs per patient. Every patient is assigned to one out of five pN-stages. We use convolutional neural networks for slide-level tumor detection. We found that the prediction performance improves by using test-t...

متن کامل

Abnormality Detection in Mammography using Deep Convolutional Neural Networks

Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017